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1. INTRODUCTION

-

~Dne of the basic protlems in statistical communication theory is that of

detecting, at the end of a communication channet, a signal imbedded in noise.
The Gaussian model is a modei for which the noise as well as the received
signal are Caussian processes with equivaient laws, so that the resuiting
detection probiem is nonsingular. Unfortunate!v "most solutions to orobiems
invelving signais in Gaussian noise are based on a knowtedge of the auto-

e

. . . L . R (/“M \)‘/..'.4' _‘3
correlation function or -pectrum (if the noise is stationarv}. In fact, of

2
£
course, as mentioned before, they are rareiy, if ever, known precisely™ (i9).

H This observation motivates the paper just quoted and, in it, its author in-

g

; vestigates the stability of the decision furictions based on a mode! with Gaus-
} ' " sian noise and covariance function R in two ways. First he considers the
- case of Caussian noise with covariance function R+A instead of just R. How-
ever "the restriction to Caussian measures were better removed even though
the noise is nearly Gaussian, if the stability criteria are to be believatle in

practice™ (19). Stability is then understood as a form of continuity of the

_:r»%”u PR O

decision functions when the topology is that of weak convergence, a conceot
which is now widely used in the field of robust statistical procedures (11).

Of course "this formulation does not allow much hope for actually calculating
useful bounds on errors® (19). Since the most important elements of a detec-
tion problem are the probabilities of false alarm and false dismissal, one may
try to study the stability problem by taking an intermediate position between

the two described above. This is *he object of the present work and the idea

is to look at specific contaminations of Caussian laws in order to find analytic
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expressions for the probatility of false alarm and that of faise dismissal as

functions of contamination. The aim is not so much to produce models for soe-

cific Gaussian disturbances as to get some feei for what these can do to the
. probabilities of faise alarm and faise dismissai.

It shall be assumed that signais and noises nave finite enerqgy, that is are

stochastic processes with square ingegrable paths. These will induce probability
measures on the Eorel sets of L 2(0, 1} , the soace of eguivaience classes of

3 square integrable functions. L :{0, 1) is a standard senarable Hilbert space

and it is notationaily simpier to work with a generai sevarable Hilbert space H,
which we shall do. B (H) is the sigma algebra generatea by the open sets of H

and is the smallest sigma aigebra which makes all continuous linear functionals

e L
L]

<-,h> , hin H, measurabie. <-,-> is the inner oroduct of H and the corres-
ponding norm is ||+ ||. All measures considerad shall be cefined on B(H).

They are typically obtairned as foilows. IfX(w.t) is a stochastic orocess defined

T
on the probability space (2,A.u) such that [ X2 (w.t) dt is finite for u-aimost
0
; every w, it induces, on B(H), a measure Px defined by
P Px{x in H: <x,h1> in 81,...,<x,hn> in Bn}=
s =Pluin Q: <X(w,’).h>inB_,....<X{(w,’}),h > inB },
; ' 1 n o]
"f where hl' .. "hn belong to H and Bl' ce 'Bn belong to R(MR}, the Borel sets of
T
R. Here <X(w,+),h>= [ X(w,t) h(t) ct.
0
' If S denotes the signal and N the noise, the detection oroblem (N,S+N) is
. nonsingular if PS+N and PN are mutually absolutely continuous, that is PS#N(B) =0

~-

if and only if PN (B) = 0 for Borel B in B(H). The singularity of a detection pro-

biem on a space of infinite dimension is notoriously unstable (19) . Consequently,

- -




{ for reasons anaiogous to those which require detection orotiems to be non-
.singular (3,14,18), attention shail be restricted to !aws which are not oniy
N in the neighbournood of Gaussian faws but aiso equivaient to these.

One tool which has proved useful in investigations dealing with robust
statistical procedures is that of contamination (21). Let P be the law of the
chosen model; its contaminations are ci the form P € = (1-¢}P+<Q, where Q
is some probability measureand 0 < e < 1. IfP = PX and Q = QY and U is a
random variable, independent of X and Y, which takes the value 1 with pro-
?‘ bability 1-¢ and the vaiue 0 with probability ¢ , then PC is the law of Z =

| UX+(1-U)Y, that is the paths of Z are obtained by sampiing among those of
X and Y according to the law of U. In this paper we shail use two types of
i ) contaminations. The first type 1T1-contaminations) is constructed with mea-
2 3 sures Q which are Gaussian and the second type (T2-contaminations} with

measures Q which are absolutely continuous with respect to P and have a

quadratic form as Radon~-Nikodym derivative. The use of such simpie conta-

1

minations has a number of advantages. First of all, their covariance has the

form R+A so that we have a nongaussian generalization of the stability study

within the Gaussian model, as in (19). Moreover, the situation is at the same
time sufficiently simple so that one can obtain analytic information on the pro-
babilities of interest, and sufficiently complex so that one can exhibit features
which do not appear in the Caussian perturbation model.

The first part of the paper deals with the basic properties of the contamina-
tions just introduced. We show in particular that they share with Gaussian

laws many properties, the main exception being that they do not necessarily




use these contaminations to study the stability of the qetection problem in case
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converge weakly o laws of the same tvpe. in the secona part of the oaper we

of sure signal and additive Gaussian noise. Besides giving a number of quanti-
tative and quaiitative resx.ms invoiving actual and nominai probabilities of
false alarm, we are abie to show that weak convergence alone fails in general
to control the behavicur of the parameters which determine the orobatilities of
false alarm: what reaily matters is the way in which this convergence takes piace.

Finally, we show that the type of contamination which is considered plays an

=

important role. Thus contaminations by'C-au'ssian taws resuit ‘in worse patholo-
gies than contaminations of the second tvpe consicdered: the former have in 2
sense "too many degrees of freedom” for weak convergence to control.

We consider here only the detection of sure signals. For some resu!ts in the

case of stochastic signals. see (7). Proofs are outlined in the apoendix.

2. CONTAMINATIONS

P will always denote a Gaussian probability on B(H). It is determined by
its mean mo and its covariance operator RP' and we shall write P ~ N (mP.RP) .
mp is an element in H and is uniquely determined by the relation

E <. ,h> = <m_,h>, for all hinH,

P P
In case P = Px, mp is the mean function of X. The operator RP is uniquely de-
termined by the relation
E_{< h>-<m_,h>}<- k>-<m_,k>}=<R_h,k>, for all hand k in H.
P P P P

In case P = PX and Rx(s,t) is the covariance of X, Rp is defined by

T
= f .
Rpﬂ (t) ;Rx(t.u) (u) du




Let (a®b) (x) = <b.x>a. Then RP has the reoresentation
»

R.= T 1\ e@®e,,
k=1 & K °

A, < » and {ek} is a3 comptete arthonormai séet in the ciosure
K
‘ .

] h ) >
where \k 0,

ey g

k
of the range of RP.Since this iatter set is the suoport of P, one can aiways sup-

pose it is H. ek is an eigenvector of RP corresponding to the eigenvalue xk. it
has been shown that Gaussian measures P on the Borei sets of L, (0,1) are all

' of the form Px, X a Gaussian process with paths in Lz(o, 1} (15). The Fourier

transform of P, FTP, is given by the retaticn

FTP(h) = EP(exp{i<-,h>}) = exo{i<mp,h>-§<RPh,h>}.
ifP= Px,.FTP(th) is the characteristic function of the random variable <X{(-,},h>,
t real.

; For T1-contaminations, we choose Q~ N (mQ,RQ) , while for T2-contaminations
we choose dQ=C”’ | |Ai (x-a) | iz dP. A is an operator which is linear, continuous,

positive and seif-adjoint, a is a fixed element in H and C = trace{A(RP*-(mP-a)@(mP-a) )Y

¢ is chosen to be C(c+C).1 , where c is nonnegative. We have already indicated

.

that contaminations can be thought of as the laws of processes Z = UX+(1-U)Y,

where X has law P and Y has law Q. We are going to add the requirement that X
and Y have the same set of paths. One way to achieve this is to require that P

and Q be mutually absolutely continuous. so that they have the same support. In

]
%

this way, we discard cases such as those for which X would have continuous paths
and Y discontinuous ones, for which no doubt would exist as to which of P and

PC obtains. For examples of T2-contaminations, see (8,9) . In particular T2-con-
taminations of stationary processes yeld harmonizable ones. We thus have

Proposition 1




———.— .

If PC is a T1-contamination, P and P are mutually absolutely continuous if
and only if P and Q are. P and its T2-contaminations are ;lwavs mutually abs-
olutely continuous. /

The first assertion foilows from the dichotomy theorem for Gaussian measures
(10) and the second is a consequence of a zero-one law for Caussian measures
(2).

Assumption

P and P€ are henceforth assumed to be mutually aosotutely continuous./

We shall first need the mean mc and the covariance Rc of P€. A direct cat-
culation yields

Provosition 2

For T1-contaminations mc = (1-e)m_+em,. and

P Q

Rc = (1-e)RP+eRQ+e(1-e) (mP*mQ )Q(mp-mQ) .

and for T2-contaminations mc = mP+2 (c+C)"RPA(mP-a) and

2 -1 - -2 - -a)AR
RC RP+2(C+C) RPARP 4 (c+C) RPA(mP a)O(n.\P a)A P./

Remark 1

From Proposition 2 it follows that both types of contaminations have a mean
and a covariance of the same form, that is
= ¥ = rY¢( }
m. mP+R b and Rc RP.I+T+1 t@t)RP.
(P and Q have been chosen equivaient in the T1 case so that in particular mQ
belongs to the range of R:—;) :These are essentially the conditions which ensure

that a Gaussian law with mean mc and covariance Rc is equivalent to P (16),

so that, even if Pc is wrongly as:umed to be Gaussian, there is no way to dis-

criminate surely between P and P€.




.
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For every fixed h in H, one may define a real random variabie X{h} by set-

'ting X{h}(x) = <x,h>, x in H. For T1-contaminations, the law of X{h} with

respect to P, defined by

PS¢  (B) = PC(x in H: X{h}(x) in B), B in B(R),
X{h}
is the obvious mixture of the faws of X{h}with respect to P and Q. For T2 -

contaminations one has

Progosition 3

Let a(h) = 2(c+C) ™! <R A(mp-a) .h>,

1

8(h) =2(c+C) <RPARPh,h>,

¢(t) = exp{it<m ,h>-it2<R h.h>}.

P P
The characteristic function ¢ of the random variable X{h} with respect to Pc,
a T2-contamination, is given by
o (1) = {1+ia(h)t-38 () t22e (1)
Leta(h) = 1-(c+C) ™' (<R AR h.h>/<R_h.h>},
b(h) =2(c+C)"! {<RpA(m,-a) ,h>/<R b, h>Y,
c(h) = (c+C)! {<RPARPh,h>/<RPh,h>2},
G (y) = Gaussian density with mean <mP,h> and variance <Rph.h>.
The density g corresponding to ¢ is given by
gly) = {a(h)+b(h) (y- <mp,h>)+c (h) (y-<mp,h>)’}c ty)./
Remark 2
Suppose that a = m, and let z = (y-<mP,h>)/<RPh,h>§,
L2 = (c+C) ™! (<R ARph, h>/<R h.h>1,
and K = (21<Rph, >},

The density g of Proposition 3 can then be written
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e 2 2 .. . .
: gly) =vy(z) =K (1—L2+L”z*:exotf&22:.

4
p!

a unique maximum for z = 0. Otherwise v presents two symmetric peaks. Laws

I L2 < 1/3, for which a sufficient condition is (c+C) ™" zRgAR < 1/3,y has

KTt

with such densities have been shown to model some tvpes of noise (17). Since

3 £ 3 i =
FARCK, k>, with k

Réh/ | {R$h| |. will be smail in all but a finite number of directions. This shows

tap i =
PPARP is a compact operator, <RPARPh,h>/<Rph,h> = <R

the kind of departure from normality one can expect. A sink which wouid aope.ar
in the density of a!ll functionals weould eventually touch the origin, making the
law singular with respect to the Gaussian one. To obtain two oeaks with T1-con-
k. taminations, one would need distinct means. The peaks would then appear in e-
very direction, but the sink would be controlled in size. Another interesting
; - feature of the density g is that it is normal for h in the kernel of RPARP. The
measure P can thus exhibit a Gaussian behaviour in many directions without ac-
tually being Gaussian. This "Gaussianness” is controlled by the range of A. This
feature is absent in the case of T1-contaminations.
One space of interest in linear inference problems is the closure En the real
: L,-space L,(P€) of the set (X{h},h in H) of random variables. This subspace is
% called the linear space of P and is denoted L (P€) . This terminology arises as
¢ follows: if P = Px, linear operations on X are of the form <X{(-,") h> = X{h}.
L (P) contains only normal random variables. The next result states that L(Pc)
also contains random variables which all have a law of the same type.
Let P€ be a contamination and Sc be the operator Rc+m ©Om_. If f belongs to
' ;.. L(P€), the following relaticn defines an element of H denoted h(f):

h , = £ xf(x)P€(dx).
H

*-—— T B, AT AL -3 |
L - . U SRR - e ————— “"t..‘ . —
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For two such elements. hif) and h{g), one can define the inner product

<h(f),hig)> =E (fe).
H(P®) pC

Let H{PS) = {h(f),fin L(PS)} and define U :L(PS)~H(PS) by U S0 =hin.
pc P

H(P%) is then a Hilbert space, contained in H as a subset, and U _is a unitary
P\-

operator. As a set, H (P€) is the range of Sé and is isomorphic o the reprodu-
cing kernel Hilbert space of the process {(X{hi.h in H) (Lemma 1, Appendix} .

Let now B be the operator from L {P%) to H defined by Bf = RgS:“'U Cf. B is well

P
defined and continuous (Lemma 4, Appendix). Since <Rch,h> < <Sch,h>, Rz =
sgwc, where W_ is a bounded operator on H(5). Recailing that m_ = mP+Réb and
that R, = Ré(-lﬂ'ﬂ:@t)Rg = Ré(ni‘m;’, (Propesition 2 and Remark
1), one has

Proposition 4

Let f belohg to L{P€) and h'hn belong to H. Suppose that U f= Sc-fh and

pc
h=lim Si hn (We have assumed, which is no restriction, that P has full sup-
port. This implies that H is the closure of the range of S';': ). Then:

1) there exists m in H such that lim <mP,hn> = ¢m,h> (If mP belongs to the |

range of Rg , <m,h>= <R;*mP,Bf>.);
2) E () = <m, h>+<b,Bf> (If m_ belongs to the range of R, E (n =
PC P P PC

<b+R,;*mP, Bf>.);

v (0= 1eDieel 2= w2
pe ¢

4) For T1-contaminations, the characteristic function 4 of f is given by




-11-

¢(t) = (1-¢)o,; (t)+es,(t) , where ¢, is the characteristic function of a

e
N(<m,h>, | !Bf! ;| )-randcm variable and 3. is the characteristic function of

-1 %2
a N(<m,h>-<RP’ (mp-mQ) LBf>, | {Wch!! ) -random variable; for T2-contamina-
PR | L2
tions, ¢ (t) = (1+it<b,Bf>-3t (T Bfli )¢, (t)./
This result yields a usefui computational tool, stated as a corotlary.

Corollary

Let f,,....f belongto L(PS) andh_,....h solveU f.=S'h . Writem,,
n - n PC' C i -

v

* 2
o, rf?3 for the n-vectors with respective entries <m,h >,-<8 R_*(m -m ) f>
i P QP

*
<B b'fi> . and M, ,MZ,M3 for the (nxn)-matrices with respective entries
C(P%) ’
* * *
<B Bf ,f> ,<B (1+T )Bfi,f,> ,<B TBf, , f> ., where T solves
VL) @ P9 e
* 1

R_ =R (I+Tq)R;. Then, if M, has an inverse, (f

Q P

- - -
given by, in case of T1-contaminations, g{x) = (1-elg, (x)+eg,(x), where g

yoorooof )t has a density g
n

is the density of a N (n-;,‘,M,-)-random vector and g, is the density of a N (l; !-1;2,.\12) -

random vector, and, in case of T2-contaminations, ’

(%) = (1-trace (M M) -<X-m M} T >+3<M] MyM] (X-m ), (< -m )>)g, (X)./
There are two reasons which explain the effectiveness of Gaussian laws for

solving problems of detection and estimation. The first is that their nonlinear

space L, (P) is the direct sum of the symmetric tensor powers of their linear

space L(P) (12), which roughly means that the elements in L, (P) are timits of

sums of polynomials of increasing order evaluated at an orthonormal basis for

L(P). The second reason is that the set of Caussian laws is closed for the topo-

logy of weak convergence. It can be checked that the first result remains true
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for T1- and T2- contaminations. The second however no longer obtains: the set

of contaminations is not closed for weak convergence. as the following results
show, and it is at the boundary that cathologies occur.

Proposition 5

Let (P:,n in N} be a family of T1-contaminations which converge weakly to
the probability M. !f lim inf € =0 or !im sup En =1, M is Gaussian. Otherwise
M= (1-u)M,+uM,, where M. and M, are Gaussian and 0<u <1. M is not neces~
sarily a T1-cortamination and is Jaussian if and onlv if M, = M2 (in particu-
lar M; and M, need not be mutually absolutely continuous) ./

Proposition 6

Let (P;,n in N) be a family of T2-contaminations which converge weakly to
the probability M. M has then a characteristic function $ given by
$ (h) = (1+i<d, h>-<S?vsih, h>) exp(i<n, h>-3<Sh,h>),
where S is a linear operator which is compact, nc;nnegative and seifadjoint and
V is linear and bounded (to have a T2-contamination, one needs an S which has
finite trace and a V of the form S*WS*) . S has finite trace in one of the following
two cases:
1) 0<lim inf {Cn/ (cn+Cn) Hdim sup{C _/ (cn+Cn) }<1:

-1
2) if a_(h) is zero when ,’!RihH isand [c +C ) (<R A R h,h>/<R h,h>)
n n n o n nnn n

otherwise and if Bn(h) is zero when HR:hH is and <bn,h>/<Rnh.h> otherwise, t'%
sup(an(h),n,h)d and sup ( [sn(h) {.n,h)<t./

3. STABILITY OF SINCULARITY

Consider two Gaussian measures P, and P, representing respectively the law

of the noise and the law of the received signal in some detection problem. Detec-




— e e ——— e il
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root of ; (R,+R3) and if R, = R§(1+T)R: with T Hilbert-Schmidt and ¢(T)>-1
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tion is nonsinguiar if and only if m,-m, belongs to the range of the sauare

(a(T) denotes the spectrum of T) (16). Suppose now the actual laws one ceals
with are Pf_: and Pg , T1- cr T2-contaminations. possibly of a different tvpe.
The following resuit oroves that the criterion for singuiarity which applies

in the Gaussian case applies to T1- and T2-contaminations as well, so that

singularity is stable over the class of T1- and T2-contaminations.

Progosition 7

Let P{ and PS be T1- or T2-contaminations with respective means m_

. - . c o€
and m 2,and covariances R and R . The detection problem (P, 'Pz)
c, c,l c,2 -

is either singular or nonsinguiar and it is singular if and oniy if mc -m
i1 C,2

belcngs to the range of the squere root of 1{R  +R ) and ifR =
c' 1 C, 2 C, 2
Ri (I+S)Ri’ , S Hilbert-Schmigt and c(S)>-1. Furthermore, if the detec-
c

nd

e

tion problem is nonsingular, dPi/d Pcl = (dP‘g/dP:) (dP,/dP ) (dPl,'de) v

4. DETECTION OF SURE SIGNALS

One observes a sure function which can have two possible sources: it is either
a noise sample N or a distorted signal sample s+N, where s is known. The
nominal model is that model for which the law P of the noise N is Gaussian
with mean zero and covariance RP of the form :n Xn eﬂ@en ., as defined in
the introduction. The actual model is the model for which the law of N is Pc,
with mean zero. The nominal model represents the model actually used and
the actual model represents the system which is being investigated, the "true”

model. The corresponding detection problem is nonsinqular whenever s be-

longs to the range of the square root of RP(S) , which is isomorphic to the

S H b 8 ey o
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s reproducing kernel Hilbert space of RP(Lemma 1. appendix). Since RP and R

pC

i -
, ) have square roots with identicai rangesflLemma 4, appendix}, the detection
l problem is nonsinguiar for the actual as wel! as for the nominal model. It shall
henceforth be assumed that detection broblems are nonsingular.
The maximum likelihood decision functicn for the nominal model is given'by
=T ’ \ 1, L] . - 1 - .
D(X) F\(sn/ A Xl } with Sy = <s.e > and X{en, {y) = <y.e > (19):

A. The case of Ti-contaminations

By choice, P = (1-¢;?+eQ with Q ~ N (mQ,RQ) and P and Q mutually absolu-

tely continuous. Then R = R;(uTqu:;, Tq Hilbert-Schmidt and 3(T )>-1(16).

Since mg'=m. =0, mq = 9 (Proposition 2). Let € 411 span the range

+1' n+p

L -1 1.2 _ 2 ot o2k
of the projection =, C.=1]n RZ¥s!1 4el! Rpi’s!_! and C, = HumpRP*ssl N

! ! Tin
np 1 L Qn,p

+ 2
Then€ ("7 (5,/2)X %, 1} equais Cy if X = N and equals C;+C, if X = s+N.
P i=1

so that D (X} belongs to L2(P%). When X = N, let Y, be a normal random variable

C e RN i e e

-1 .2
with mean zero and variance | IR:sl |, and., when X = s+N, let Y, have the

same law and variance, but mean equal to the variance. Similarly, let Y2 be

-3 42
normal with, when X = N, mean zero and variance HRQ§|| . and, when X = s+N,
-4
Q
sities of Y, and Y2. Then D (X) has density f(x) = (l-c)f1 (x)+ef2(x) . Finally

-1 2 2
i mean ||R isH and variance | |R “s || . Let f, and f, be the respective den-
P
let pa = PS(D (X)>alN} and p" = PID (X)>a|N}. Then pa-pn = ¢(Q{D (X)>a}X=N1-p").
; ¢ denotes the distribution function of a N(0, 1) -random variable. The polar

decomposition (22) yields Ré = R;(HTQ)*U, where it is no restricition to sup-

- 2
pose U unitary, so that R; = U‘-(I+TQ)'§R§’-'. Let 8 = a/”R:s .
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- -

$= R'P*s/le: sl!, t= !|(|+TQ)';-§H. Then o™-p? = {9 (8)-% (8t) }.
Proposition 8

Fix s and 8 > ¢ 1 (3/4) . Then
1) 8 =sup {[p?-p™!,P a T1-contamination} = % (8) -1;

2) there exists (Pi,k in N) such that W-lim Pck = P (W- indicating weak con-
vergence) and Iimkjpa—p’a[ =4a./

The reason fer 2) is that P and PC can be close in the sense of weak convergence
as well as close to beirg orthogonal. The result also snows that the discrepancy
between pa and p" Can increase with the level of the test.

Proposition ¢

There exist sequences {Pz,sk,k in N} such that W-lim Pﬁ =P, lims =0and

k
Hmk‘.p:-p?('} =1-9(8)./

The reason for this phenomenon is that the class of admissible signals is too
large for 'p3-p" ! to be controlled by weak convergence.

Another way to compare p? and pn is to look at the ratio pa/pﬂ_ One has

p2/p" = 1-c+e((1-4 (8))/ (1-0 (8))). '

As a function of t, pa/pn decreases from 1-c+{ (1-¢ (s))q to 1-¢. One thus
has p2<p" if t>1 and pa>pn if t<1. When the level of the test increases, the
behaviour of p? " depends on the relative behaviour of 3, cand t. Suppose thus
that t goes t N ‘ar than 3 goes to infinity: p2/p" is unbounded, so that
pn goes to ze: i an p2. If now ¢ goes to 1 arc t goes to infinity, p'/pn

goes to zero so that p? goes to zero faster than p". We have seen in Propositions

8 and 9 that this behaviour can occur as P; converges weakly to P.

As the examples considered show, weak convergence, when ¢ does not go
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to zero, depends an the behaviour of R;TQRg whereas the behaviour of ?Da~_on!

and pa,’pn depends on that of TQ and these behaviours are not necessariiy refa-
ted. .

Let now P: be the law of s+N and o? be the probapility cf false atarm for the
maximum likelihood detector for the actual detection modei. that is pa = Pc'.dPg;-'ch>a}.
Again one wouid like to know to what extent pn = P{dPs_/de} is a "goo_d" approximation
of p?. Letk = {1-e+c(dQ/dP) }" ' 11-¢+e(dQ_/dQ) {dQ/dP) (dP/dP,) }. Then
dP:/dPC = k(dPs/dP) . so that k represents the effect of contamination. The following
assumptions allow one to obtain a manageable form for k and wiil be made for the
remaining part of this section.
Assumptions
1) s belongs to the range of RP(which is a subset of the range of R:) .
2) RP and RQ have the same range,
3) R(SLR,:,1 has a symmetric ciosure G whose domain has P-protability one.
G is bounded and

-1 -
In particular, when R -R ! is bounded on ihe range of R

Q P P’
self-adjoint (16). Let K(x) = (1-c)det (14T j)+eexn(-1<Gx.x>}. THen k(x) =
K(x-s)/K(x) (16). Thus, whenever s belongs to the kernel of G, the actual and

the nominal probabilities are the same. One however has

Proposition 10

1 he range of k can be {x in R:0<x<=}./
Proposition 10 shows that the values taken by the actual and nominal likelihoods
can be quite different. Since the global behaviour of k, as a function of ¢, G anc

T Q is difficult to analyze, one may try to evaluate k at critical points. There are

two of these of particular interest, 0 and s, at which one presumably would deci-
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de that respectively no signal or a signal has been sent. Since k(s) = 1/k (0}, it
suffices to consider k{%). it is shown in the next orooosition that kK (0) can be as
large as exp{}| {R;si §2} which is the vaiue taken by the nominal likelihood when
the exact signal has been received. The actual iikelihood has then the value one,
whereas the nominai iikelihood can be very small.

Proposition 11

i 2, .
supf{k{0)|e,Q} > exp(iHRPtSif b/

Here again, the bound can be approximated when P€ is close to P in the weak
sense. Formulae for oa are qQuite complicated and oniy in particular cases can one
obtain global bounds for p? in terms of p". Here is one case which shows what
kinds of restrictions are then required.

Proposition 12

= 1l _ z . ,
Let Bk = 1+\ak/(1 ek)det (l+TQk) }. Suppose that Gk is nonnegative and that

By < M< =. Then, for a>0 and W-1im Pi =P,

Y e lirm imf B fpC Conl < li €S
P{dP,/dP>aM} < lim inf Pk{de’s/dem. < lim sup Pk{de

Thus a uniform bound on the admissible perturbations is required and the bounds

/dPS>a} < P{dP_/dP>a/M}. |
s k= s :

obtained are good only if the perturbation is uniformly small.

8. The case of T2-contaminations

The features of T1-contaminations exhibited above indicate that stability results
can only be obtained by restricting the class of signals and/or knowing some a
priori uniform bounds on the perturbations one must consider (we have in particu~
lar assumed in Propositions 10, 11 and 12 - see the "Assumptions® preceding the-

se statements - that the signal belongs to the range of R_, rather than to the range

P

of R:. which is imposed by a nonsingular problem). In this sense, T1-contamina-"
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tions have "tco many ‘degrees of freedom”. One can thus attempt to obtain stability
results by restricting the class of contaminations considered. This is what one a-
chieves by introducing T2-contaminations. Whereas ¢ and Q act as incependent
variables for T1-contaminations, for T2-contaminations, : depends on Q in the sense
that € = C/{c+C), where C is a function of the parameters which determine Q ( see
in particular the proof of Proposition 13). [ntuitivvelv, T2 -contaminaticns are ob-
tained from T 1-contaminations by keeping the first terms of the Taylor expansion
of the liketihood of Q with respect to P. This indicates that classes of contaminations
intermediate between T1- and T2-contaminations can be obtained by keening more
terms in the Taylor expansion considered above.

It is again assumed that m, = 0, which is achieved by setting RPAa =0. As in

the case of T1-contaminations, one may check that D (X) belongs to L, (PY). Let Y4

[} 2 -
. be the same random variable as in A. and f, be its density. Let ¢ = HAYs |1/ e+C) | IRP§+

and f,x) = xzf1 (x)/] lR;isl iz. With respect to P<, D (X) has then a density f given

by the relation f(x) = (1-e)f1 (x) +ef2 {(x). Let |, be the indicator of the closure of

A
the range of A and s,pa,p“ and s have the same meaning as in A. O;we then has,
Cod if K= ‘} IA*R:‘;§I 12/ tc+trace (AR ) +! |ata]l?), p2-p" = K1, ()] (x2-1)exp (~3x ) dx/ /2.
\ The next proposition shows that the pathologies illustrated in Proposition 8 and 9
cannot occur in the case of T2-contaminations. The reason is clear: ¢ is not inde-
pendent of Q. There is a restriction however: s is required to belong to the range
of RP'

Proposition 13

Let s belong to the range of RP and W-lim Pﬁ = P, then lim p: =o"./

A simple limit calculation (4) gives the relative behaviour of p' and p": p" tends

.
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to zero faster than p3.

Proposition 14

For fixed ¢ and large 2, p%;p" ~ a2./

Finally, we consider again the actual likelihood and the actual probability of
false alarm, still denoted p?. In contrast to the casé of T 1-contaminations, the func-
tion k of Proposition 10 is bounded for T2-contaminations. indeed. if K(x) = ¢+! {A'}(x—a)g
dP® = (K /(c+C)}dP, so that, if k(x) = K(x-s)/Kix), dP‘s:/dPC = k(dPs,’dP). Then

Proposition 15

Let a, belong to the kernel of A, xm = §{1+(1+uc/<As,s>l~§} and }y, = i{l-(l#ac/<As,s>)$
Then k(aﬂms*aA) < k(x) < k(a+?\Ms+aA) i

From Proposition 15 one can get a resuit which is more satisfactory than Proposi-
tion 12, but which is still insufficient in the sense that it depends on a priori know-

ledge on the perturbations, which is uniikely tc be available.

Proposition 16 .

if s is in the range of RP and lim sup Cn/’cn < =», then, when W-lim P: =P,
c c _ *
lim P {dPL /dPp>a} = P{dPs/dP>a}./
S. SUMMARY
Let Py = P{dPs/dP>a}. the probability of faise alarm for the Gaussian model,
P = Pc(dPs/de}, the probability of false alarm for the "exact" model when the

detector is the likelihood for the Gaussian modei, and 03 = PC(dPilchm}, the ‘

probability of false alarm for the "exact" model. We have considered the case of »

Caussian detection mode! which is only an approximation to an "exact® contamina-

ted model and compared the quantities P,.P,.and Py when the law PF of the "exact”

model is close in the topology of weak convergence to P, the law of the
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nominal model, which in the present case is Caussian. We have seen that the
qz;antities !p.‘-pii and p4/p;,i=2, 3, depend on the type of contamination as well
as on the distance between P and P°. Prooosition 9 shows for exampie that one
can have, for a T1-contamination, !ps-p5! > = >0, though s and the distance
between P and P are negligible. Proposition 16 shows however that unaer fairly
mild restrictions, §p‘-p3i is smail as soon as P and P® are close and P® isaT2-
contamination. We have also shown that looking at the tikelihood can be rather

misleading when the model is not ‘exact”

6. OUTLINE OF PRCOFS

The proof of Proposition 4 is based on four lemmas which we first state.

Lemma 1

——

Let Sc,H(P®) and U _ be defined as in Proposition 4. For f in L (P€) define
pc

F¢ H+-(R by the relation Felh) = lfi f(x)X{h}(x)PC(dx). Let H(Sc) = (F,fin L(PO)?,

fl

TE clf9) and Ug L(P°)~H(S_) be defined by the relation Us f=Fr

<Ff'Fg>H(Sc)

Then

1) H(Sc) is a Hilbert -pace (the reproducing kernel Hilbert space of X) and U,5 is
c

P unitary operator,

2 [l < st e ||

H(pec)’
3) the two sets H(P€) and range (Sé) are equal,
4) <sih,sik> = <h,k>, so that S}: H+H(PC) is unitary,
C C H (Pc) [

- § iy f= sthand 1, = X(h,}, then f=1im £_if and only if h = tim sih, . inL(P%)

and H respectively./

ey - .

- SE—— S S ———— ——
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Lemma 1 follows from the definitions and first principles. These also yieid
Lemma 2

If Rp is injective, trace (ARP) z | !RéAR;!I if and only if A = h&h./
Lemma 3

if P€ is a T2-contamination and T+1t€t is the operator of Proposition 2,
o(T+rtot) > -1./
pf. : It suffices to orove that -1 is not an eigenvalue of T+ttt and this follows from
the inequality 1+{ (1+<T,h h>)¥-1} < lbl] < 1./
Lemma 4

Let T = T+t t®t. Then

where V. is unitary,

1) Rz and Rg have the same range and Ri = Rg(l*f)ivc.

*SE’U f is linear and continuous./
P pc
pL : 1) follows from Lemma 3, {(5) and the poiar decomposition (22). B is well

2) the map B: L(P®}+ defined by the relation Bf = R

defined on H* and, if fis in H*, [[Bf|| < K{|f}! A
L(P©)
Progosition 4

. r = lim RY
pf.: Letf =X{h }. Then f=1limf_ by Lemma 1, so that, by Lemma 4, Bf = lim Rghy,.

Furthermore, E (f) =lim <m
pc P
linear functional on L(Pc) . The first part of 1) follws by the Riesz theorem and

,hn>+<b.Bf>, so that lim <mP.hn> is a continuous

1 -
Lemma 1. If me belongs to the range of R",, <mP,hn’tends to <RP*mP.Bf> . The result
on the variance follows from Lemma 4 and that on the characteristic function from

Proposition 3./

Proggsition 5

pf. :For ¢,x, and y in the open urit interval, let fc (x.y}) = (1-¢)x+cy. If 0<a<?,

there is a 8 in the open unit interval such that f‘ (x,y) >1-8 implies x > 1-a and
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y > 1-a. Consequently, if {P‘;,A in A} is relatively comract, so are {Px,:\in A}
and {QA'A in A}, proviced €, =1 and < is in the open unit interval.

Suppose now {Pi,)‘ in A} converges weakly to PC so that 0 < lim inf €, < lim sup €5 2N
If {P_.nin N}is a subsequence of {PA,:\ in Al let {an ‘converge to ¢ in the

k

open unit interval. Set PS/& = (1-c)P_ +¢ . [P} converges weakly to PC.
P o (1-<) A an A c eakly
The remarks at the beginning impiy that {Pnk? is relatively compact. The proposi-

tion follows. To see that the limit is not necessarily a contamination, consider '
n
o pC R N I, 3 = -
with Pn = (1-¢)P+eQp, P~ N(D,Rp). Qn v N(O,RP;I+Tn)RP), Tn = ({(1/n)-1)uu,
u a unit vector./
Proposition 6

pf. : Because of (9}, P® has characteristic function given by the relation

¢ (h) = {1+i<b,h>-<Bh, h>lexp{ian, h>-i<Sh h>}, where B and S are bounded

"‘ 1
|
1

e mmon &

linear operators. Since the convolutions {Pf‘*Pg} converge weakly to (P+PC},
the latter has characteristic function ¢ (h) |2 = {<b,h>2+(1-<Bh,h>) ZJexp{-<Sh,h>}.
{6 (h) |2 is continuous in the S-topoiogy and thus, if {x,} converges weakly to
zero, tim ¢ (%) {2 = 1. Consequently, lim sup <Sxp,xp> < @ if thi; limit is
positive, choosing if necessary a subsequence, one may assume that lim <Sxp . Xp> = ¢2>0.
One then has that lim {l—t2<an,xn>} = exp{o2t?}, so that lim <Bx,.x_>=0and
consequently that lim <an,xn> =0. S* is thus compact and thus so is S. From the
inverse Fourier transform of 4, one obtains that <Bh,h> < <Sh,h>, so that
B = s1Ts!, T bounded.

1) yields, as in the proof of Proposition 5, that (Pn} is relatively compact, so

that (R, }is compact. 2) yields that P: hasa Fourier transform ¢, such that

fe(h) |2 < exp{-(1-8 )<Rph, h>}, which also implies that {Rn} is compact. That
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S has finite trace foilows then from (20)./

Proposition 7

pf. : Recall that Pand PC have teen assumea equivalent. Using the resuit (1) "
and u orthogonai and 1 and v equivalent imply u and v orthogonal®, one can see
that the protlem (PC,PS) is either singuiar or nonsinguiar and that it is nonsin~
gular if and only if the oroblem (P,,P;} is nonsinguiar.

Suppose then that the problem (P1,P2) is ncnsingular. The operators R1' ,Rz,

i(R1+R2) have all a square rcot with the same rarge (16) and. by Lemma 4 of 6.,

Rc ; and Ri,i=1.2, have a square root with the same range. Thus me,1™M. 5 =
m,-m2+be1-R§b2 belongs to the range of the sguare root of ;(RC ,'+Rc 2) . The

polar decomposition and the equality R2 = Rf (I+T)R: yield R* = R? (1+T) i'v, where V

[ I~ =

is unitary (R1 may be assumed injective by restricting attention to the support of

b
Pl) . Using again Lemma 4 of 6., one can write R. 1= R(‘: ‘WRi " where W is a

1
product of operators which are either unitary or of the form (1+UV %7, with U

i
[
!
§
‘?
{

Hilbert-Schmidt and s (U)>-1. Unitary operators always appear in pairs involving
the operator and its adjoint. Since (1+U) t can always be written in the form
140 with U Hilbert-Schmidt, W has the form 1+S, S Hilbert-Schmidt. To see that

o(S)>-1, it is sufficient to remember that R and Rc have square roots with

c,1 .2

identical ranges, so that I+S is invertible. The reverse implication is proved

similarly./

Proposition 8

pf. : Let H(;) be the subspace spanned by s and H(s) B be its orthogonal
subspace. Let () denote the projection onto H(s) and 1(s) the projection onto

- ¢ - i
H(s) . Set TQ = 91(s). Then t = (1+¢)?. Since 9 can be any real number strictly
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larger than -1, t can take any positive value. As a function of t, <{9(3)-0(at) !
is a convex function with a minimum at t = 1 and extreme vaiues at t = 0, wnere its
value is ¢{?(8)-3), and att = =, where its value is ={1-} (28)}. Furtermore, for
¢ (8) >3/4, $(8)-3> 1-9(8).

{P‘C(}converges weakly to P if and only if either ’sk : converges to zero or {Qk}
converges weakly to P. If the former obtains, lim p,a( oy i =0. Let {ay } be a se-
quence of positive numbers whose sum is finite. Define ek,l =0forl=1,...,k-1,

% Kk = (1/ek)-1, ®k being defined below, ang, for i >k, 2 =1 Let ;k = <§,ek>

k,!

; i slzw, T {2 52
and choose {ek}such that lim 8, s& ==, Then T{Sk/(Hek,l)} 2 9, 5; - sothat

t, <_{ek§§}"} and lim t,_= 0. Now, <Rpch,h> = <Rph,h>+zk|_§°kek'lxi<el,h>2.
< =

Since the sequence {ek 1 is uniformly boundced, lim <R Ch,h> = <Rph,h> .

Py

.

Furthermore trace (R C) is bounded and £ <R _e ,e > converges uniformly to

c i1
Pk I=m Pk

. o€
zero as m increases to infinity. This insures that W-lim Pk =P (13)./

Proposition 9 .
3

- - -3 -
pf. : Sets, = )\iek. Then HRP%skH =1, 3=aand s, =R, sk/!!RP skH e,

Let TQ = ekn(gk)Then, as in the proof of Proposition 8, tk = (“ek)*'
k

<R ch,h> = <RPh,h>+ek9kxk, trace(R c) = trace (RP)+skekxk, and

Py Pe

[
y i h {e 1}
I <R &8s z <RPe|,el>+ekekAk. It thus suffices to choose {2, such that
I=m Pk I=m

bim ek‘=~ and lim ekxk =0./

Proposition 10

~ 3 }
pf. : Fix g so that it is not orthogonal to s and T > -| !R;g! 12, Setg = Rl;g/] [RF‘,g! l

<oy
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andy = -T! !R:,gi [2/(1+7 | ]R;g: 12). Let 1(g} be the projection onto H(g) and

T9172)T1Q) +R(g) =
o3 T ia) +Tig)

\ .
[ g®g and K(x) = (1-¢)+z(1+T ] ER;g;!31’exo{-§r <g,x>7%.

1(g) be that onto H(g) . Then, T, Y1G), (5T " = 1o URE

I+Ré(rgOg)Ré. e
Set <g,x>=vy, <g,s> = a, -3T'y? = P{y). k can then be expressed in the form

k*(y) = {A+Bexp{P(y-a)}}/{A+BexpiP(y)}}. If L(y) = P'{y)lexn{P(y) Y/ {A+~Bexn P(y)}},
then (d/dy)lk*(y) = Bk*{y){L(y-a)-L(y)}. Now, for I <0, L is strictly increasing.

so that the graphs of L(y-a) and of L{y) are garailel and do not meet {because of

the assumption that a is different from zero, that is, g a~a s are not orthcgenal) .

The derivative of k* has thus constant sign and k* is a monotone function which

is unbounded and positive./

Proposition 11

pf. : it suffices to establish that sup(k(0) {e,G} = exp{3! !R;s! 21, One has

1 1~ o
<R:GCRzs,s> > -1

-3 . - e R SR
that <Cs,s> = HRP s]l2<R'§CR ,5>. Since (l+TQ) = 4R3CRZ, <R GRJ

3=
P
and thus -}<Gs, s> < i!iR;‘sl 12 | Conseaquently

k(0) < {e+(1-—e)det}(|+TQ) }"{(1-s)det*(|+TQ)+eexp{-;[ IR;*s112}1. For aand b
positive and c strictly larger than one, the function (a+bcx)/(a+bx) is increasing
and bounded by c. Thus k(0) < exp{}| IR;}S‘ 12} .On the other hand, if

A= (1-e)detf (14T ) and u =,

Q
k(0 = (o) Dexpi-4] IR 1|2 exp (-4« (4T ) 715,551 expit]IR-¥s1[21.
So, by convexity,

k(0) zexp(-3 (o) LR Es 12w 04T ) TH1120) exptilIRGHs 1)

If H,, is the subspace spanned by ey, ....eq, Ty thy projection onto H_ and !!;

+ - S n ¥ = in
that onto Hn' set TQ =nijand ¢ =1 {1/(1+n) Y . Then det (|+TQ) = (1+n)

and |l(|+TQ)-*§| |2 = (1+|"|).1 |[nas112+]1n,sl12. Taking the limit as n grows
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yields k (0) > expi}! ER?S} 2y

Proposition 12

pf. : When G_ is nonnecative, 8, <kyix) €38 and thus

C . ColP r 2l \ <. . N . .
P_{dP_/dP>aM? < Pn;dPn'S/aP;m; < PLidP./dP> 3/M }. Since dP /dP is a
continuous function, the resuit fcllows from the oroperties of weak convergence.;

Prooosition 13

pf. : Leth*= Réh/ ! ERéhl !. One then has that EQEexp{iX{h}}} =

{1-<RgARéh*,h*><Rph,h>/r_trace(ARp)+1 }Az'a} Iz}}exp{--}<RPh,h>}. So, if

P

+1Afa 1121 =0,/

W-lim Qn = P and k is a vector in the range of R, with norm eaual to one,

o Ind 12
lime  =1lim [1AZRgK] | /{trace (A R.)

Proposition 14

pf. : To obtain the extreme values of k. one studies the function k {s*+tx) as 3
function of t. It turns out that s* must be of the form s* = a+is+a,, with aA in
the kernel of A, for s* to be extremal. X is obtained using this reprecentation./

Proposition 15

ef. : |If xm corresponds to S;\in and Ag to s;‘ax in the proof of Proposition 14,

then PC{D(X)>Ioga—logk(a+:\ms+aA)} < P€{dPS/dPC>a} ¢ PC{D (X) >loga-logk (a+dyys+a,) b
Then, if d = 4c/<As, s>, k(a+xms+aA) = lf1+(1+d)‘}}/{(1+d)i-1}, which increases
strictly from zero to one as d goes from zero to infinity. If now W-lim Pl_c‘ =P

and lirﬁ sup Cn/cp < =, lim <Ans,s>/4cn =90 and lim k(an‘xn‘ mS™2a )=1./
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